Rの基礎からモダンなデータ分析までわかりやすく解説
統計、線形代数、機械学習―データサイエンスのタスクをこなすのに重宝する「R」。
本書はオープンソースの統計解析ソフトRの解説書です。データサイエンスに興味があるけれども、何からはじめたらよいか迷っている方を対象に、理論的な説明・数式だけでなくRのコードを多く引用して解説していますので、データ分析・ビジュアル化からレポートまで、実際にコードを動かしながら学ぶことができます。
Rのインストール、RStudioの使い方、Rの文法、データハンドリング、グラフィックス、確率分布、基礎統計、回帰、重回帰、一般化線形モデル、モデル評価、オーバーフィッティングを防ぐ方法、クラスタリング、時系列、レポーティングなどを網羅。第2版ではdplyr、purrr、Tidyverse、Caret、RMarkdown、Shinyの章が追加されました。
実務でデータサイエンスを用いビジネスにインパクトを与えたい方、データサイエンティストを抱えている部署のマネジメントの方など、様々な用途で・自分の読み方で活用してもらえればと思います。