近くの書店で在庫を調べる
  • AuthorBishop,ChristopherM/著
  • PublisherSpringer
  • ISBN9780387310732
  • Publish Date0年6月

Pattern recognition and machine learning

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

>> 続きを表示

Recently borrowed books by this book borrower.

  • 情報論的学習理論
  • 学習システムの理論と実現
  • データ解析のための統計モデリング入門 / 一般化線形モデル・階層ベイズモデル・MCMC
  • 統計的学習の基礎 / データマイニング・推論・予測
  • データマイニングによる異常検知
  • パターン認識と機械学習 上 / ベイズ理論による統計的予測
  • パターン認識と機械学習 下 / ベイズ理論による統計的予測